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1. OVERVIEW

In this Quarterly Progress Report, we present our work

performed during the period May 18 to Aug. 17, 1981. Our work

during the past quarter concentrated on two main areas:

1. Improvement of the phonetic vocoder and variations of
the vocoder to improve intelligibility.

2. A new method for quantizing a sequence of spectra for
the unsupervised method of very-low-rate vocoding.

1.1 Phonetic Vocoder

The phonetic vocoder is based on the recognition of the

sequence of phonemes in the input speech. This sequence is

recognized by selecting the best path through the network that

matches the input. The current phoneme recognition rate of 60%

is not sufficient for intelligible speech transmission.

During this quarter we investigated the usefulness of

phoneme pair probabilities for improving the phoneme recognition

rate. We assumed, as a first approximation, that the probability

of the next phoneme depends only on the current phoneme. The

probabilities were estimated from our natural speech data base.

This model enhances the likelihood of phoneme sequences that

correspond to the English language. In fact, the output of the
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phonetic vocoder has fewer phoneme insertion errors. The

recognition rate remained at 59% but the errors can be

characterized as word substitution errors, i.e., the output was

long strings (2 to 3 words) of either correct or wrong phonemes.

We then evaluated the performance of the current matcher in

a semi-automatic labeling procedure of new speech. Basically,

the operator determines the sequence of phonemes in the input.

The matcher is then used to determine the location of the

phonemes in the input. The results are encouraging and will

speed up the labeling process.

Finally, we investigated two methods to improve the

intelligibility of the vocoded speech with the current phonetic

recognition algorithm, but at slightly higher bit rates than 100

b/s. The first method was to transmit, in addition to the usual

information, whichever template of the diphone was actually

matched. This method would increase the bit rate to around 136

b/s. In the simulation of this system the resulting speech was

substantially more intelligible than that of the phonetic

vocoder. The second method, with a bit rate of around 200 b/s,

is a diphone vocoder. In this method, we allow any diphone to

follow any diphone in the network. We then transmit the actual

sequence of diphone templates matched. The output speech of this

vocoder was reasonably intelligible.

2
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5 1.2 Sequence Clustering

I We developed earlier a Markov chain model for speech to

reduce the bit rate ot a vocoder by using the time dependence of

1 quantized spectra. The bit rate was reduced from 180 b/s to 135

1 b/s for the spectral information, since not all spectra can

follow each other in speech. While the bit rate was reduced,

-this method requires a large data base to estimate the necessary

high order Markov model for a very-low-rate vocoder.

During this quarter, we developed a new method that uses the

time dependence of spectra but does not require as much data as

the Markov chain model. This new method quantizes a sequence of

spectra, called a segment, simultaneously. The bit rate is

reduced since not all sequences of spectra are possible in

speech. We use a clustering algorithm to determine a

representative set of possible segments. We also investigated an

efficient new distance metric that does not require the usual

dynamic programming time warping. The preliminary results during

this quarter are encouraging. We plan to continue developing

this approach in the coming quarter.

1 3
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1I 2. PHONETIC VOCODER

I Our research on the phonetic vocoder covered four areas

during the past quarter. The first area involved an initial

attempt at incorporating the a priori probabilities of phoneme

sequences into the distance metric. Second, we investigated the

possibility of automating part of the labeling procedure for new

speech. Third, we considered some variations on the basic

phonetic vocoder scheme that would improve intelligibility at the

cost of a small increase in average bit-rate. Finally, we

consider some of the changes that might be made to the phonetic

vocoder in order to improve performance.

2.1 Phoneme Sequence Probabilities

If we model the phonetic vocoder problem as a probabilistic

pattern recognition task, then we can say that we would like to

find the string of phonemes that are most probable, given the

evidence. That is the sequence Wi for which

P(xlw.)
P(wiX) = P(wi) P(x)- - (i)

is maximum. The term P(xlw i) is the probability of the

hypothesized phoneme string, wi, producing the observed

I
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Sacoustics, X. The term P(x) is the same for all theories and is,

therefore, ignored.!
2.1.1 Phoneme-Pair Probabilities

The term P(wi ) represents the probability of one particular

phoneme sequence. This is, in general, hard to estimate.

However, if we define wi as

wi = Wil , Wi2 , Wi3 .... Wij ... WiN (2)

then

P(w) P(Wil)P(W i2Wil)"P(Wi 3W i 2 W i l ) " P( i
41W i 3 ,W i 2 ,Wi l )"

(3)
.... P (W iN1IWiNI'WiN-2 •..Wil)

If we assume that the probability of each phoneme is only

dependent on the preceding phoneme, we can approximate P(wi) by

NP (W i) P(Wi . Tr P(W ij 1Wi'j-l )  (4)
j=l

or

N
log P(w i) log P(W i) + E log P(W. 1W ). (5)

j=l (j Wj-

Since, in the matcher, all theories are forced to start from the

5I
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silence phoneme, P(Wil) is the same for all theories, and can,

therefore, be ignored. The other terms are simply the

conditional probability of each phoneme in a theory, given the

preceding phoneme.

2.1.2 Probability Estimation

The data base of natural speech consists of roughly 4000

phonemes. However, only 1200 of the possible 2730 phoneme pairs

occur in these 4000 samples. We clearly do not have enough

samples for good estimates of all the phoneme-pair probabilities,

but we can make some use of the available data. We use a

apadding" procedure to avoid the case of no samples for a

particular pair. That is, we assume we have seen every pair

once. Then we add any observed samples to the data. It can be

shown that, with sufficient training, the probabilities achieved

by this Bayesian estimate will asymptotically approach the

correct probabilities.

With so few samples, the probabilities are swamped by the

padding. Therefore, we use a modified form of the padding.

Rather than assuming that one sample of each pair was observed.

we can assume, for instance, that 1/10 sample was observed (or

alternately, multiply the observed samples by 10). This allows

the probabilities to reflect the data base more quickly.

61
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Of course, since all the probabilities used in the matcher

are log-probabilities, these phoneme-pair probabilities are also

converted to log-probabilities, and can be added rather than

multiplied. We also allow for a weighting factor to be

multiplied by each phoneme-pair log probability in order to make

it comparable to the scores for the spectral match and the

duration log probabilities. In our current experiments, we

multiply the scores by 5.

2.1.3 Implementation

The implementation of the phoneme-pair probability score is

fairly straightforward, since in the current matcher, diphone

templates are never shared among different diphones. When a

theory leaves a phoneme node, as soon as it gets to a spectrum

node, the matcher can unambiguously determine the phoneme toward

which that path will lead. Knowing the identity of the two

phonemes, the matcher extracts the weighted log-probability score

from a precomputed matrix and adds it to the score for that

theory.

2.1.4 Results

As expected, the addition of phoneme-pair probabilities to

the matcher score eliminates many unlikely phoneme sequences. In

7
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previous versions the matcher would frequently produce several

(20%) extra phonemes between the correct phonemes. These extra

phonemes were mostly eliminated. The total number of correct

phonemes in the output has remained essentially unchanged (59%).

Two interesting differences are apparent in the resulting

phoneme sequences, as well as when we listen to the phonetic

synthesis of the output. First, there are now long strings of

correct phonemes. Two or three words in a row often come out

perfectly. Once on the right tract, the program is fairly good

at staying there. Second, there are also long strings of

incorrect phonemes. These often come out as completely

different, but recognizable, words from those intended. That is,

the matcher behaves more like a word matcher, where the "words"

are likely phoneme sequences. We have not yet determined whether

this "bunching" of errors is beneficial or harmful to

intelligibility.

The behavior described above is a natural consequence of the

global optimality of the dynamic programming procedure and is one

reason we are considering a change to an algorithm that allows us

to break up these long strings. This change will be discussed in

Section 2.4.3.

8I
!



Report No. 4766 Bolt Beranek and Newman Inc.

j2.2 Semi-Automatic Labeling

One of the more time consuming aspects of this project has

been that of producing a data base of labeled speech. This is

one of the major reasons for the unsupervised learning approach

that we are pursuing in parallel to the phonetic vocoder

approach. Therefore, we decided to investigate a partially

automated procedure for labeling speech.

2.2.1 Labeling Procedure

Phonetic labels, as we define them, consist of a set of

phonetic text labels, each with a corresponding time marker

indicating the beginning of that phonetic segment in the speech.

Our normal procedure for labeling is to use a program (LPSA) that

simultaneously displays several parameters of the speech waveform

as a function of time (e.g., energy in different bands, formants,

pitch, zerocrossing rate, etc.). As a time cursor is moved

across the parameter tracks the program also displays the

waveform, LPC spectrum, and parameter values at that particular

time. When the user types the name of a phonetic segment, the

program gives it the time corresponding to the cursor position,

and displays the label under the parameters at that time. While

this procedure is quite flexible and easy, it still requires

about 10-15 minutes for an experienced transcriber to label a 2-

second utterance.

9
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In the semi-automatic procedure, the transcriber simply

types the string of phonetic labels, without time markers, into a

text file. This takes about 30 sec. for a 2 sec. utterance.

This transcription is then given to the matcher as a constraint

on the allowed network path. The matcher then finds the optimal

match for the phonetic sequence given the diphone network. The

matcher then writes a text file with the time markers and labels.

2.2.2 Labeling Results

We compared several label files produced by this semi-

automatic procedure with those produced manually. Of course, the

phonetic labels were the same, since they were both produced

manually. The time markers were, however, slightly different.

The typical difference was one or two frames. The difference was

rarely three or more frames, and was never observed to be off by

a whole phoneme.

Our evaluation of the performance of this automatic

alignment of the labels is that they should be adjusted to match

the positions that would be given by the transcriber. We feel

that, since the transcriber uses a very well defined set of rules

to determined the exact position of the phoneme boundaries, these

rules could be incorporated in a second-pass automatic program

for correcting the boundaries. This program would be allowed to

10
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adjust each of the boundaries between two phonetic labels

according to specific rules depending on the phonemes involved.

For instance, the boundary between a vowel and a plosive would be

positioned at the frame with the maximum drop in the energy of

the preemphasized signal. The boundary between a /W/ and most

vowels (except /UW/) would be positioned where the second formant

was half way between the steady-state values for the /w/ and the

vowel.

This two-pass alignment procedure would greatly reduce the

time needed for a transcriber to label new speech. There would,

of course, be a cost in terms of computer charges. The current

program requires about 1-2 minutes of CPU time for a reasonably

good alignment. Assuming the programs are run after midnight,

the cost is about $1 for a sentence - less than the cost for the

transcriber, and far less tedious.

2.2.3 Uses for Automatic Alignment

There are two primary uses for the above procedure. The

first, as mentioned. is to facilitate the labeling of a large

data base. A second use will be in automatic adaptation to a new

speaker.

As outlined in QPR-3 [1], we have devised a method for

extracting the long-term average spectrum and vocal tract length

11
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from a short sample (10-20 sec.) of unconstrained speech. These

long-term statistics, which have been successfully incorporated

into our phonetic synthesis, can also be used for a gross speaker

normalization for phonetic recognition. In order to perform a

more accurate speaker normalization (for both recognition and

synthesis) we need to extract phoneme specific features. One

method that would now be possible is to require the new user to

read a particular known passage. This passage would be designed

so as to include a wide variety of phonemes. The passage might

be anywhere from 10 sec. to 1 minute long, depending on the level

of detail desired. Then, knowing the phonetic string uttered,

the matcher could label this "calibration" passage. Using the

labeled speech sample, phoneme specific statistics (such as

spectra and duration) would be extracted. These statistics could

be incorporated appropriately in the recognition and synthesis

models.

We believe that an approach such as this will be necessary

until we can become more sophisticated at recognizing the speech

of a new speaker without any prior speaker training.

2.3 Variations to the Phonetic Vocoder

At present, the phonetic recognition rate of 60% is not

sufficient for intelligible speech transmission. While we expect

12
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the phoneme accuracy to improve to 80%, thereby improving

intelligibility, we would also like to determine how much the

intelligibility can be increased by the addition of a small

number of extra bits. We also wanted to try to approximate the

systems that would result from the unsupervised learning

approach. Therefore, we simulated two variations to the basic

phonetic vocoder. These variations and their corresponding

results will be described below.

2.3.1 Transmit Particular Template Matched

In the phonetic vocoder, the matcher finds the closest set

of diphone templates (consistent with the template recognition

network) and transmits the phoneme sequence that corresponds to

this diphone sequence. The phonetic synthesizer does not know

which of the several diphone templates for each diphone matched

best, and therefore always synthesizes one prototypical template

for each diphone. At present, the template used in synthesis is

the one extracted from the nonsense syllable data base. Thus,

there may be a large spectral or perceptual difference between

the input speech and the resynthesized speech. If the phonemes

are correct, intelligibility will still be high. However, when

many phonemes are wrong, intelligibility will be poor.

We could, by the additional transmission of just a few extra

13
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bits, tell the synthesizer which of the diphone template matched

best. Assuming entropy coding, this information could certainly

be transmitted for an average of 2 bits per diphone. For a

normal speaking rate of 12 phonemes per sec., this corresponds to

24 b/s. Since the transmitted units would no longer be as

constrained, we might also require somewhat more accuracy in the

duration transmitted or an additional bit specifying overall

energy level. Assuming one more bit per phoneme, we get 36 b/s

extra or 136 b/s total.

To simulate this system, we allowed the matcher to record on

a file the exact spectral sequence that it matched for an input

utterance. The pitch and voicing were taken directly from the

input (instead of transmitting one value per phoneme). The gain

could be either resynthesized from the templates or taken from

the input. There was no smoothing of the spectra and gain

between templates (as there is in phonetic synthesis). The

parameter file created was then used as input to an LPC

synthesizer, and speech was synthesizee.

The resulting speech was substantially more intelligible

than that of the phonetic vocoder. In informal listening tests

several naive listeners were able to understand most of the

words. When the gain was taken from the templates, there were

some inappropriate loudness problems due to the fact that the

14
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3 level of the *natural" templates had not been normalized. We

feel that this problem can be easily corrected by the same

I techniques used in the phonetic synthesis.

12.3.2 Diphone Vocoder

The second simulated system was that of a diphone vocoder.

In contrast to the phonetic vocoder, which transmits one phonetic

unit for each one seen, the diphone vocoder can transmit

arbitrary diphone templates for each diphone seen. In other

words, the constraints imposed by the network are not used. The

matcher is allowed to follow any diphone template with any other

diphone template. This allows the matcher to model the input

speech more accurately. In practice we have found that the

average spectral error (euclidean distance on LARs) only

decreases by 15%. In theory, the number of bits required to

transmit the diphone sequence should double. However, since the

templates cannot really be followed by any other (i.e., they must

be roughly continuous in order to model the speech) the bit rate

would go up to about 100 b/s for the templates. Since the system

would now be even less like a phonetic vocoder, we feel that we

would need to transmit more information for pitch, gain, voicing,

and duration - probably about 100 b/s using various tricks. Thus

the total bit rate might be 200 b/s.

1 1
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3 This system was simulated by allowing the matcher to follow

any diphone with any other diphone. That is, a theory coming

1 into a phoneme node was allowed to proceed from any other phoneme

node in the network. Of course, the theory stack had to be

lengthened (to 4000) in order for the matcher to find a nearly

optimal path. The matcher then records the particular spectra

matched as described in Section 2.3.1. This parameter file is

resynthesized as before.

The speech resulting from this system was reasonably

intelligible. In informal tests, naive subjects typically

understood all or almost all the words. More formal tests are

needed.

This system is identical, in most respects, to the segment

vocoder that will be described in Section 3. The only difference

is that the segment inventory has been chosen by hand and

represents diphone templates, rather than the result of

clustering. We expect that the bit rate of this system could be

lowered somewhat.

2.4 Future Changes to the Phonetic Vocoder

In this section we consider some of the changes we will

implement to try to improve phoneme recognition accuracy.

116
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1 2.4.1 Distance Metric

One of the major problems is the distance metric. We can

say this based simply on the recognition performance. In some

1 respect, the different samples of the same diphone all sound

alike; they are all clearly understood as the same phonemes.

IHowever, in the space of the distance metric, same diphone are

not closest; they are misrecognized. If we had a perfect

distance metric that exactly reflected phonetic perception, then

with only one, or possibly two templates for each diphone, we

would get almost perfect recognition performance.

Notwithstanding the hypothetical discussion above, we would

like the distance metric to reflect phonetic perception more

closely. One change would be to include a term for the

derivative with respect to time of the spectrum. Another change

would be to use a nonlinear (e.g., Mel) frequency scale. We will

also investigate the use of different spectral representations

(e.g., cepstral parameters, pseudo formants, etc.). Finally, we

will try to include some other features (such as energy or

voicing) that are not taken into account in an LPC spectrum.

We hope that we will find a metric that, for the same amount

of training, will result in higher phoneme recognition accuracy.

1 17
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3 2.4.2 Time-Warping

I The time-warping used in the current matcher is a minimum

distance warping. That is, with some weak constraints, the

I program tries all possible warpings of the input to any given

template in question, and picks the warping with the smallest

spectral and duration error score. One disadvantage of this

warping is that it requires a large amount of computation to

consider all the alternatives. Also, it may allow time-warpings

that would be perceived as making a substantial phonetic

difference.

We are looking into some other time-warpings that require an

order of magnitude less computation. For instance, if the

warping of a segment of the input speech depended only on the

input, and not on the template, then the program could perform

that warping once, with no exhaustive search. The same principle

could apply to the template.

It may also be more advantageous to separate the time-

warping from the score for the warping. That is part of the

distance between the warped input and warped template would

reflect the difference in the warping.

Finally, by constraining the warping, we may actually

disallow unreasonable warpings, thereby improving phoneme

j recognition accuracy.

1 18,
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We are investigating some warpings that we think will have

all the properties mentioned above.I
2.4.3 Pruning

The current strategy for pruning theories from the stack is

to keep a fixed number of theories (say 1000) for each frame.

This is called a "bounded breadth" search. The program can also

use a "beam" search. In a beam search, all theories within a

fixed threshold of the best scoring theory are kept. In either

case, we typically find that all of the theories are only

investigating the possibility of a few (about five) phonemes at

any time. Said another way, there may be several hundred

different alignments of the same diphone templates against the

input. We would like to modify the pruning strategy so that it

spreads the available theories over more phoneme possibilities.

Another change that could be important is in the details of

the dynamic programming algorithm. Typically, when two alternate

theories come together, we choose the better of the two and

retain the score of the better theory for the one theory that

will proceed. This procedure is used to find the best single

path through the network. However, in the phonetic vocoder, our

goal is to find the most likely phonemes at each point. To do

this, we must add the two probabilities of the two theories

19
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rather than just pick the higher one. This procedure will not

find the best single path, but will tend to get more phonemes

correct. It will also scatter the errors more than the dynamic

programming procedure, which tends to bunch the errors.

2.4.4 Template Selection

Given that we cannot hope to find the perfect distance

metric, we will put enough samples of each diphone in the network

such that, given the distance metric we use, the nearest template

to an unknown template will usually be one of the correct ones.

As long as we can guarantee that small differences in our

distance metric are not perceptible, we can always achieve this

performance by increasing the training until the distance between

samples of the same diphone are small.

For a large number of diphone templates, however, the

storage becomes large, and the computation also grows linearly.

If two templates are almost identical, they might as well be

represented by a single template (with a weight or count of two).

Also, we could represent several templates in a region by a

single template with a "width" as big as the region. Typically,

we use a mean and standard deviation for this purpose. As the

number of templates gets very large this representation in terms

of clusters of templates will approach the performance of the

I
| 20
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complete set. However, for a small number (say 3) of each

diphone, there may be no advantage to this clustering.

Upon examination of the matcher results we can see that the

matcher almost always matches the input to the natural diphone

templates rather than the nonsense diphone templates. We infer

from this that the nonsense diphone templates are not typical of

natural speech. We intend, therefore, to replace the nonsense

diphone templates in the phonetic synthesizer with natural

diphone templates. They will also be removed from each diphone

on the recognition network as soon as there are a few natural

templates for that diphone.

21
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3. SEGMENT CLUSTERING

I During this quarter, we started developing a new

unsupervised method for reducing the bit rate of an LPC vocoder.

In the previous QPR 1], we described a Markov chain model that

requires a rate of 135 b/s for the spectral information only.

The Markov chain model uses the statistical dependence of

consecutive quantized spectra to reduce the bit rate. The new

approach, called segment clustering, uses the statistical

dependence of consecutive spectra by efficiently quantizing a

sequence of spectra. The sequence of spectra is called a

segment. We describe the new approach and present some

preliminary results on the adequacy of this method for very-low-

rate vocoding. We are also investigating a distance metric that

involves a non-linear time warping and is computationally very

efficient compared to dynamic programming time warping.

3.1 Speech Model for Segment Clustering

In the new approach, we assume that the speech has been

segmented. The segmentation algorithm produces segments with a

I duration comparable to that of a phoneme. To reduce the bit

rate, we propose to quantize the LPC spectral information in the

following manner. The sequence of spectra in a segment are

1 22
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3 Iquantized simultaneously by mapping the segment into a new

segment called a segment template. The segment template is

I chosen from a set of templates by minimizing a distortion

(distance) measure between the input speech segment and the

template. We do not quantize pitch and gain. Hence the output

speech will have the same pitch and gain tracks as the input, but

the short-time spectrum will be that of the sequence of segment

templates obtained by quantization. The diphone vocoder would be

quite similar to this approach if the segment templates were

dipnones and we synthesized the matched path in the network. The

success of this approach depends on finding a set of segment

templates that occur frequently (or naturally) in speech. To

determine such a set of templates we propose to use a

segmentation algorithm to generate segments from natural speech,

then to use a clustering algorithm to determine the set of

"typicalw segments. These *typical" segments are called segment

templates. We call this method segment clustering since we are

clustering segments that are sequences of spectra with variable

durations. We need a distortion measure on the segments for both

quantization and clustering. We point out that since the

segments will usually have different durations, the distortion

I measure must include some form of time warping. We present in

the next section a new distortion measure that includes time

warping yet is computationally efficient.

I 2
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3.2 Distortion Keasures

In defining a distortion measure between two segments, one

must specify the temporal alignment of the two segments. Fig. 1

illustrates two segments as two trajectories in spectral

parameter space. We note that we only have a time sampled

version (at the frame rate) of both segments. The heavy circles

indicate the sampling times. One method of time alignment is

linear time warping. We scale and resample the trajectories such

that both have the same total duration. In isolated word

recognition, a dynamic programming nonlinear time warping has

been more successful. However, from looking at the two segments

in Fig. 1, we can determine by ignoring the timing information,

that the two segments are quite similar. They both indicate

fairly closely the same sequence of parameters; however, their

timing characteristics are quite different. Hence, if we

transmit the timing information separately, a simple distortion

measure for the segments can be defined as follows.

For each segment, we compute its total length using a

Euclidean distance on LAR. Then we represent each segment by

resampling the trajectory at M spatially (in the parameter space)

equi-distant points. The number of points M has to be large

enough so that the length of the sampling interval is small

enough to capture important speech detail. The distortion
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FIG. 1. Two segments in parameter space. Time is
indicated by heavy circles and the arrows
indicate the direction of time.
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between the two segments is obtained by the sum of the Euclidean

distance between the corresponding equi-distant sampling points

on the two trajectories. We refer to this sampling process as

spatial sampling. Using this representation, we are ignoring the

timing information of the segments.

This Euclidean distortion measure is simple to implement and

very efficient computationally especially when compared to a

dynamic programming time alignment method.

3.3 Overview of the Proposed Vocoder

To implement a vocoder based on segment quantization, we

have to solve the following two problems:

1. Determine a set of segment templates. The number of
templates should be as small as possible.

2. How to quantize the input speech.

As we discussed earlier, we will use Ln automatic

segmentation algorithm followed by a clustering algorithm to

determine the templates. We will use with minor modifications

the clustering algorithms developed earlier under this contract

and described in QPR-l (2] and QPR-2 (3]. We are currently

developing the segmenter.

The second problem of quantizing the input speech has two
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possible solutions that we plan to investigate. The first

solution is to use the above segmentation algorithm and then

quantize each segment using minimum distance classification as

described earlier. This solution is simple and computationally

efficient. However, it does not guarantee that the resulting

sequence of segment templates is the best approximation to the

input speech. The reason is that the segmentation is independent

of the resulting segment quantization. To minimize the spectral

error (distortion), we have to segment and quantize

simultaneously. Basically, we need a search over all possible

segmentations of the input speech to find the optimal

segmentation. The resulting quantized speech will have the

smallest distortion. This search will be implemented using a

dynamic programming algorithm. We have implemented the first

solution using hand segmentation. We describe in the next

section some preliminary results using this method. We plan to

implement the dynamic programming search in the near future.

3.4 Results

We have some preliminary results on the usefulness of the

new distance metric and segment quantization method. To evaluate

the new distance metric, we implemented an LPC vocoder to

determine the required spatial sampling rate, i.e., the average

number of spatial sampling points per segment.
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The equi-distant spatial sampling was performed on 1 sec.

speech segments. We used several values for the number of equi-

i distant space samples, M-10, 20, 30, 50 and 100. The timing

information was transmitted at those sampling points as an

i additional parameter (unquantized). At the receiver, the time

interval between two consecutive equi-distant sampling points is

distributed uniformly along the piecewise linear trajectory.

Hence in this vocoder, we stretch and compress time non-linearly

between two sampling points. For M=20, we start to lose some

intelligibility. At M430, there is a slightly perceptible

distortion and for M-50 and 100 there is no loss in quality.

The second experiment was an attempt to evaluate the

potential intelligibility of a vocoder based on segment

clustering. Instead of using clustering and segmentation to

obtain the templates, we decided to use the hand labeled diphone

data base as a set of segment templates for speech. We had two

separate sets, the nonsense diphones and the natural diphones.

We considered those separately because we thought that the

natural diphones would be more typical of natural speech segments

than the nonsense diphones. We note that the natural diphone

gdata base does not have a replication of all possible diphones

but has many replications of the most frequently used diphones.

We used 2729 nonsense diphones and 4211 natural diphones. The

average length of a nonsense diphone is 48.76 (standard
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deviation=19.4) and that of a natural diphone is 40.7 (standard

deviation-22). The nonsense diphones are longer in parameter
space since they are usually well articulated as compared to the
natural speech diphones. We used segmented speech and each

segment was quantized to the nearest diphone template. We use

gthe equi-distant space sampling representation and the Euclidean

mean square distance. We used M=7 sampling points per segment.

The input timing information, pitch and gain were used for the

LPC synthesis. The spectrum was obtained from the sequence of

I chosen diphone templates.

The resulting spectral quantization error averaged over the

input was 36 (mse on LAR) for the natural diphone data base.

This error corresponds approximately to the error of a 5 bit

single frame cluster quantizer. Further, the average number of

segments in the input speech was 11 segments/sec. The bit rate

for the spectral information was 12 bits x 11 segments/sec-132

bps. We used approximately 212(4096) natural diphones. The

Iintelligibility of the vocoded speech was poor but encouraging.
In addition, the above segment quantization experiment

demonstrated the following two results. First, the performance

Iof the nonsense diphones was poor as the output speech was

completely unintelligible. Second, the method was sensitive to

segmentation errors. When the wrong segmentation was used, the
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I output speech degraded tremendously. The input speech in this

experiment was hand labeled. In the future, we will use an

automatic segmenter to guarantee the consistency of the

segmentation for the templates and the input speech.

During the next quarter, we plan to implement the

segmentation and clustering algorithms to obtain a more efficient

Jset of segment templates than the natural diphone set, and to

investigate the use of search techniques to obtain a segmentation

( that minimizes the spectral distortion.
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